Refine your search:     
Report No.
 - 
Search Results: Records 1-1 displayed on this page of 1
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Fibrous iminodiacetic acid chelating cation exchangers with a rapid adsorption rate

Jo, Akinori*; Kugara, J.*; Trobradovic, H.*; Yamabe, Kazunori*; Sugo, Takanobu; Tamada, Masao; Kume, Tamikazu

Industrial & Engineering Chemistry Research, 43(7), p.1599 - 1607, 2004/03

 Times Cited Count:28 Percentile:67.34(Engineering, Chemical)

Fibrous iminodiacetic acid cheating cation exchangers were derived from chloromethylstyrene radiation-grafted polyethylene-coated polypropylene filamentary fiber and its nonwoven cloth. Ligand contents and acid capacities of the resulting cation exchangers were ca. 2 mmol/g and ca. 4 mmol/g for the filamentary fiber and for the non-woven cloth, respectively. The selectivity sequence of nonwoven cloth shape for dialect metal ions is Mg(II) $$sim$$ Ca(II) $$<$$ Co(II) $$sim$$ Zn(II) $$<$$ Cd(II) $$sim$$ Ni(II) $$<$$ Pb(II) $$<$$ Cu(II). Capacities in mmol/g at pH 5 were Ca(II) 0.91, Mg(II) 0.98, Cd(II) 1.5, Ni(II) 1.5, Pb(II) 1.6, Cu(II) 1.8. Column mode for filamentary fiber shape revealed that breakthrough capacities for Cu(II) (ca. 1 mmol/g) were not dependent on flow rates up to 200 $$sim$$ 300 h$$^{-1}$$ in space velocity.

1 (Records 1-1 displayed on this page)
  • 1